Lien copié

La fabrication de "brain organoïde devices" envisagée dans un rapport de la Maison Blanche sur les biotechnologies.

« Advance capabilities for manufacturing functional neuron or brain organoïde devices, both for neuronal stimulation and repair and for potential biological computing application » : la fabrication de « brain organoïdes devices » vont s’inscrire dans les programmes officiels de recherche en biotechnologies, aux Etats-Unis, comme en témoigne la publication par la Maison Blanche, en mars dernier, du document “Bold Goals for U.S. Biotechnology and Biomanufacturing. Harnessing Research and Development to Further Societal Goals » (2).  L’objectif figure dans la partie “bold goals in cross-cutting R&D (Theme 5. Innovate biomanufacturing approaches), laquelle est présenté avec l’avertissement suivant :  « these should not be read as commitments by the National Science Foundation (NSF) to undertake specific activities. Achieving these bold goals require significant prioritization of R&D investments and efforts across the U.S. government, as well as actions from the private sector and state, local, and tribal governments ». Le terme “brain organoïde devices” designe ce que adviendrait « potentiellement » en conséquence de l’apport d’organoïdes neuronaux (c’est à dire de matière neuronale vivante cultivée in vitro à partir de cellules souches),  à des matières non vivantes, dans la perspective de fabriquer d’une part des ordinateurs biologiques,  «biological computing application » et d’autre part pour des applications de santé. La technologie avait été qualifiée du terme, un peu spectaculaire, d’ “intelligence organoïde” dans un article publié en février dernier dans la revue Frontiers in neurosciences , Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish (1). Le document publié par la Maison Blanche présente les éléments de contexte pour la fabrication à venir de biomatériaux. Le document est très instructif sur les intentions, même si très peu précis sur les modalités.

Context for the Bold Goals : New biotechnologies and bio-inspired designs hold the potential to extend human capability, increase health, and enable forms of data storage and computation requiring far less space and energy than conventional systems. However, to realize these and other potential applications, new forms of biomanufacturing are required.  Innovations in biomanufacturing modalities will need to leverage all the advances in R&D envisioned in Themes 1 through 4, together with advances in multi-materials processing, robotics, and cyber-manufacturing. To achieve the bold goal of producing devices that integrate living and non-living components and pave the way for assistive devices to benefit human health, advances will be needed in sensors, the internet of things, autonomy, human-machine teaming, and computation at the human- technology frontier. Moreover, new methods and processes are necessary to develop new application- specific uses (e.g., human-machine interfaces, wearable devices, and biotechnologies that augment human capabilities) and provide alternative fuels and infrastructure materials. Again, realizing new methods and processes proceeds through the “design-build-test-learn” cycle.

R&D Needs : Innovate in biomaterials manufacturing:

  • Advance capabilities in nanomanufacturing that leverage biobased nanomachines and designs.

  • Develop engineered biological and biomanufacturing systems to produce biopolymers and process them in situ and at scale, thereby enabling manufacture of biomaterials which mimic those found in nature such as insect silks or exoskeletons.
  • Advance integration of cells and tissues with devices and the creation of multi-materials:
  • Advance development of bio-enabled processes using DNA, viruses, and bacteria, including DNA-enabled self-assembly for data storage applications.

  • Advance capabilities for bioprinting cell scaffolds, bone or cartilage replacements, and multi- material structures to mimic or replace living tissues. Advance capabilities for bioprinting in applications including fuels, electronics, and materials.

  • Incorporate the potential for new cells and tissues to participate in sensing, actuating, data capture, feedback, repair, and scale-up of manufacturing printed living materials reproducibly.

  • Advance capabilities for manufacturing functional neuron or brain organoid devices, both for neuronal stimulation and repair and for potential biological computing applications.
  • Create innovations at the human-technology frontier:
  • Develop manufacturing of wearable and ubiquitous technology to provide enhanced mobility and assist with communication and everyday needs.

  • Create appropriate technologies to improve worker productivity and quality of life, including collaborative physical and cognitive assistance, seamless augmented reality and telepresence, and private and secure health and wellness monitoring“.



1 –

2 – 

0 commentaire


Your email address will not be published. Required fields are marked *

Champs obligatoires*